Distributed Runtime Verification of JADE and
Jason Multiagent Systems with Prolog*

Daniela Briola, Viviana Mascardi, and Davide Ancona

DIBRIS, Genoa University, [taly
daniela.briola,viviana.mascardi,davide.anconaQunige.it

1 Introduction

Verifying properties of interactions taking place inside open, complex, distributed,
dynamic systems is of paramount importance for most applications and is manda-
tory for safety-critical ones. Verification can take place at design time (offline or
static verification) or at runtime (online or dynamic). For runtime verification
some layer between the monitor executing the verification engine and the sys-
tem under monitoring must exist, so that actual interactions can be intercepted
and the compliance of each one against the protocol can be checked. A common
way to improve efficiency and fault tolerance of the runtime verification is to
distribute it among many monitors. This requires that the protocol is projected
onto subsets of participants.

If the system has been engineered as a multiagent system (MAS), which is
a good option when openness, complexity, distribution, dynamics are character-
izing features, then the choice of either JADE, http://jade.tilab.com/, or Jason
http://jason.sourceforge.net/, as the platform for implementing it may be a very
natural one. JADE, implemented in Java, is the state-of-the-art tool for MAS
development and has been used for many real industrial applications. Jason,
implemented in Java as well and based on a Prolog engine built from scratch by
its developers, is one of the most widely used frameworks when the agents un-
der development are designed according to the Belief, Desire, Intentions (BDI)
architecture.

Due to the wide range of possible application fields of Jason and to the large
amount of real use cases of JADE, being able to verify interactions taking place
in MASs implemented in one of these two frameworks is a concrete step towards
making MASs more reliable and enhancing their industrial and commercial us-
ability. In this demo we show our contribution for the achievement of this goal.

We have in fact designed and implemented a framework for distributed run-
time verification of MASs and ad hoc interfaces for monitoring JADE and Jason
interactions. The framework consists of four layers: (1) a formalism for describ-
ing agent interaction protocols (AIPs) based on constrained global types [1] and
their extension with attributes [7]; (2) a mechanism for projecting AIPs onto
subsets of agents, obtaining a new protocol in the same formalism of constrained
global types [2]; (3) a mechanism for verifying that interactions are compliant

* Paper presented at the CILC 2014 Demo Session, based on published material [3, 4].



Protocol representation
Protocol projection

Verification of compliance
between interaction and protocol

| Interface towards JADE | | Interface towards Jason |

Fig. 1. Our modular framework for distributed runtime verification of MASs.

with the AIP [3]; and (4) a mechanism for intercepting messages involving the
agents under monitoring, be them JADE or Jason ones, in a way as transparent
as possible.

The strength of our framework, represented in Figure 1, is its high modu-
larity and potential for code reuse: the first three layers are independent from
the actual MAS under monitoring and have been implemented in Prolog. The
“protocol representation” and “compliance verification” layers have been tested
and improved over time, reaching an almost stable version now, whereas the
projection layers works under the assumption that the protocol contains no at-
tributes (namely, it is a “plain” constrained global type) and has not been tested
extensively yet. The fourth layer depends on the MAS framework under moni-
toring: nothing prevents us from adding new agent frameworks at the bottom of
our architecture by developing ad hoc mechanisms for message interception, still
leaving the first three layers unchanged. By exploiting the components offered by
our stacked framework it is possible to implement both monitors external to the
MAS, implemented as completely separate processes that do not intervene in the
observed system, and agents which are able to monitor the protocol executions
and have the power to intervene when they detect a violation. Associating the
“compliance verification” capability with an artifact (as in the first case) or with
an agent (as in the second case) are two different design choices, each with pros
and cons. We experimented both approaches, as discussed in Section 3 where
monitoring is performed by a Java artifact that does not intervene in the MAS
activity, and in Section 4 where the Jason agent in charge of the monitoring
activity can prevent other agents from sending non compliant messages.

Whatever the choice, compliance verification should be an efficient process.
Although efficiency issues are still to be explored, distributing the runtime veri-
fication by projecting onto subsets of agents could be a way to balance the load
of the monitoring activity among more entities.

2 Background

Global types [6] are a behavioral type and process algebra approach to the
problem of specifying and verifying multiparty interactions between distributed
components. We took inspiration from global types to propose a formalism,



constrained global types, suitable for representing AIPs. Because of space con-
straints we cannot go into the details of the formalism which can be found in
[7]. Since attribute global types are interpreted coinductively, it is possible to
specify protocols that are not allowed to terminate like for example the SERVER
protocol defined by the equation

SERVER = (receive_request,0): (serve_request,0) :SERVER

where SERVER is a logical variable which is unified with a recursive (or cyclic,
or infinite) Prolog term consisting of a receive_request producer interaction
type, followed by a serve_request producer interaction type (both requiring
0 consumers), followed by the term itself. This protocol models the (infinite)
behavior of a server which is always ready to receive and serve requests; the only
valid interaction trace is the infinite sequence receive _request serve_request
receive_request serve_request ....

By means of attribute global types we were able to concisely represent pro-
tocols which are well known in the concurrent systems and MAS communities
like the Alternating Bit Protocol (en.wikipedia.org/wiki/Alternating _bit_proto-
col) and the FIPA Iterated Contract Net Protocol (fipa.org/specs/fipa00030).
FYPA (Find Your Path, Agent! [5]) is not as well known, but is a negotiation
protocol for a real MAS used by Ansaldo STS, and is far more complex than the
two others. We exploited our formalism to model FYPA as well [8].

Constrained global types can be easily expressed as a set of Prolog equa-
tions like the one defining SERVER. Attributes and constraints on their values
are represented as additional Prolog facts. In order to allow agents to verify
only a sub-protocol of the global interaction protocol, we designed a projec-
tion algorithm that takes a constrained global type and a set of agents Ags as
input, and returns a constrained global type which contains only interactions
involving agents in Ags as output [2]. Projection can be described as a function
IT : CT x P(AGS) — CT where CJ is the set of constrained global types and
AGS is the set of agents. The intuition besides the algorithm is that interactions
that do not involve agents in Ags are removed from the projected constrained
global type.

Whatever the protocol to be monitored (global one or projection) and the
framework (JADE or Jason), a monitor keeps track of the runtime evolution of
the protocol by saving its current state (which is an attribute global type) and
checking that each interaction taking place in the MAS is allowed by the current
state (namely, can lead to a new state by means of the transition function which
defines the semantics of attribute global types, implemented in Prolog). If the
interaction is not allowed, an error is reported. The monitor also checks agents
responsiveness by means of a time-out whose value can be set by the user: if
the current state of the monitor corresponds to the empty protocol (that is,
the protocol must terminate), then the monitor reports an error as soon as an
interaction is detected (independently of the time-out); if the current state is not
final (that is, the protocol is not allowed to terminate), then the monitor reports
a warning as soon as the time-out expires, if no interaction is detected (and of



course an error is reported in case an invalid interaction is detected before the
time-out).

3 Runtime Verification of JADE MASs

In order to verify the interactions taking place in a JADE MAS, we have designed
a monitor meeting the following requirements for non intrusiveness and code
reuse [4]: (1) the monitor must be able to supervise the execution of the MAS
without interfering with it, (2) the monitor activity must require no changes to
the agents’ code, (3) the formalism for representing the AIP must be attribute
global types, and (4) the Prolog code already developed for implementing veri-
fication of interactions w.r.t. attribute global types and for protocol projection
must be re-used as it is.

To meet requirements 1 and 2 we extended the JADE Sniffer agent which is
able to sniff all the messages exchanged during the execution of the MAS in a
non intrusive way: JADE is developed under the LGPL (Lesser General Public
License) and the Java source code is available to the research community, so we
were able to modify it to achieve our goals.

To meet requirements 3 and 4 we exploited the JLP library! providing a
bidirectional interface between Java and SWI Prolog. As all our previous work on
attribute global types was implemented in Prolog, allowing our JADE Monitor
to consult Prolog programs and to call Prolog predicates was the best way to
ensure reusability.

The monitor reads a file containing the Prolog code implementing verification
and projection, and a configuration file listing the agents to be monitored, and
onto which the protocol projection will be performed. A log file is written as the
monitoring goes on. The Prolog file contains definitions for three predicates:

—initialize(LogFile, SniffedAgents) which sets LogFile as the file where
writing the outcome of the verification, and projects the global protocol - which
must be defined by the global_type/1 predicate -, onto Sniffed Agents.

— remember (ParsedMsg) which inserts the Prolog representation of the JADE
sniffed message into a message list, where messages are ordered by time stamp
(if they have a time stamp, which is not mandatory) or in order of arrival.

— verify(CurrentTime) which verifies the compliance of each message re-
membered in the message list and whose time stamp is lower than CurrentTime
to the global protocol.

These predicates are called in different methods of the monitor code, imple-
menting the wanted behavior.

With this approach no changes are required to the monitored agents and hence
existing MASs can be monitored without accessing to their code, but the monitor
detects a violation only after it took place and even in case of a protocol violation
the MAS execution goes on.

! http://www.swi-prolog.org/packages/jpl/java_api/



4 Runtime Verification of Jason MASs

Since Jason agents can integrate Prolog facts and rules for defining their knowl-
edge, the Jason monitor [3] can be generated in a trivial way by integrating
directly into its code the Prolog code for protocol specification, monitoring and
projection that the JADE monitor must instead read from the Prolog file. The
way interactions are sniffed in Jason depends on some assumption on the agents’
code and requires some modifications to it: we assume that agents interact via
asynchronous exchange of messages with tell performatives; their original code
must be modified in the following way:

1. the .send built-in action for message delivery is replaced by !'my_send and
2. two plans must be added for managing the interaction with the monitor.

The first plan is triggered by the !'my_send internal goal; my_send has the
same signature as the .send internal action, but, instead of sending a message
with performative Perf and Content to Receiver, it sends a tell message
to the monitor with content msg(Sender, Receiver, Perf, Content). When
received, this message will be checked by the monitor against the attribute global
type representing the protocol, as briefly explained in Section 2.

The second plan is triggered by the reception of the monitor’s message that
allows the agent to actually send Content to Receiver. In reaction to the re-
ception of such a message, the agent sends the corresponding message to the
expected agent.

With this approach the code of the monitored agents must be conceived and
implemented in a way that makes monitoring possible, but the monitor detects a
violation prior than the actual message 1s sent and can stop the agent violating
the protocol by not allowing it to send the “wrong” message.

References

1. D. Ancona, M. Barbieri, and V. Mascardi. Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In SAC. ACM, 2013.

2. D. Ancona, D. Briola, A. E. F. Seghrouchni, V. Mascardi, and P. Taillibert. Efficient
verification of MASs with projections. In EMAS Pre-proceedings, 2014.

3. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In DALT X, volume
7784 of LNAI Springer, 2012.

4. D. Briola, V. Mascardi, and D. Ancona. Distributed runtime verification of JADE
multiagent systems. In IDC, Studies in Computational Intelligence. Springer, 2014.

5. D. Briola, V. Mascardi, M. Martelli, R. Caccia, and C. Milani. Dynamic resource
allocation in a MAS: A case study from the industry. In WOA, 2009.

6. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP, LNCS, pages 2-17. Springer, 2007.

7. V. Mascardi and D. Ancona. Attribute global types for dynamic checking of proto-
cols in logic-based multiagent systems. TPLP, 13(4-5-Online-Supplement), 2013.

8. V. Mascardi, D. Briola, and D. Ancona. On the expressiveness of attribute global
types: The formalization of a real multiagent system protocol. In AT*IA, 2013.



