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Abstract. A (hereditarily finite) set/hyperset S can be completely de-
picted by a (finite pointed) graph Gs—dubbed its membership graph—
in which every node represents an element of the transitive closure of
{S} and every arc represents a membership relation holding between its
source and its target. In a membership graph different nodes must have
different sets of successors and, more generally, if the graph is cyclic no
bisimilar nodes are admitted. We call such graphs hyper-extensional.
Therefore, the elimination of even a single node in a membership graph
can cause different nodes to “collapse” (becoming representatives of the
same set/hyperset) and the graph to loose hyper-extensionality and its
original membership character.

In this note we discuss the following problem: given S is it always possible
to find a node s in Gs whose deletion does not cause any collapse?
Keywords: Hereditarily Finite Sets, Hypersets, Bisimulation, Member-
ship Graphs.

Introduction

Two sets are equal if and only if they have the same elements. This principle—
the so-called axiom of Ezxtensionality—goes at the very heart of the notion of set,
as it states that given s and s’, the condition of them having the same elements
is sufficient to guarantee that s and s’ are the same thing. As a matter of fact,
extensionality not only was among the postulates of the first axiomatisation
of Set Theory—i.e. the Zermelo-Fraenkel axiomatic set theory ZF—but is also
undisputedly present in any subsequent axiomatic presentation of sets.

Being able to establish equality by extensionality only, however, presupposes
that membership is acyclic. In fact, admitting the possibility to have a cyclic
membership relation, imagine two objects a and b satisfying the following simple
set-theoretic equation z = {z}. In this case, in order to establish wether a is equal
to b using extensionality, we must rely on our ability of establishing equality
between their elements. That is equality between ... a and b. Our argument (as
the underlying membership relation) becomes cyclic!

Since the 1980s, the elegant notion of BISIMILARITY has been extensively
used to sensibly extend the notion of set-theoretic equality to the case in which



we drop the assumption that the membership relation must be acyclic. The
notion of bisimilarity was introduced (almost at the same time) in many different
fields. Aczel, in particular, set up a graph-theoretic view on sets and hypersets,
according to which the consequences of dropping acyclicity of € was rendered
cleanly in its anti-foundation aziom (AFA [Acz88], see also [BM96]), stated in
terms of bisimilarity.

In this note we study a simple-looking problem that can be stated on the
graph-theoretic representation of sets and hypersets. The problem can be, infor-
mally, given as follows: given a set S and its membership graph Gs—a graph
representing the transitive closure of S—, does there always exist a node in Gg
(i.e. a set in the transitive closure of S) whose elimination from Gg will cause no
pair of nodes to become bisimilar? In other words, is it always possible to find
a way to reduce a graph-theoretic representation of a hyperset by one element,
without losing any inequality among the remaining hypersets in the transitive
closure of S?

Notice that we pose and study the question in the hereditarily finite case.
That is, not only we play with pure sets (i.e. sets whose only elements are
themselves sets), but also on an entirely finite “chessboard”.

The question has an easy and positive answer for well-founded sets using
the notion of rank. However, as the guidance for choosing which node to delete
is exactly the feature we cannot count on when dealing with hypersets (that
is the notion of rank) the case in which € can be cyclic becomes quickly more
interesting.

We present here a few partial and initial results that, incidentally, suggest
that probably the problem should be studied as a graph-theoretic one.

In the concluding remarks we briefly discuss a problem that, among others,
brought us to get interested in the above mentioned question.

1 Basics

Below we schematically recall some basic definitions. See [Jec78] and [Lev79] for
detailed definitions. For a given well-founded set x we say that x is hereditarily
finite if it is finite and all its elements are hereditarily finite as well. In formulae:
HF(z) < .. Isfinite(z) AVy € x HF(y). Moreover, we define the rank and
the transitive closure of x as follows* : rk(x) =, sup{rk(y) +1:y € =}, with
rk(@) = 0, and trCl(z) =, U U{trCl(y) : y € = }.

If, as we do here, we do not assume € to be necessarily well-founded, a few
words are in order to reasonably extend the notion of hereditarily finite set and of
transitive closure. In fact, also the notion of rank can be redesigned for the non-
well-founded arena®. In order to state the anti-foundation axiom and capture

4 These definitions can be fully formally given by induction on €, by exploiting any
sensible notion of finiteness.

5 Actually, this can be done in many different ways, but the real power of any such
extension remains rather mysterious (see [PP04,DPP04]).



more clearly the notion of hyperset, we need to specify the above mentioned
extension of the principle of extensionality.

To introduce hereditarily finite hypersets we need the definition of bisimu-
lation relation. This definition is first given for graphs—as follows—and then is
used as an equality criterion to introduce the world of hypersets. This last step
is done exploiting the fact that both sets and hypersets are naturally understood
as membership graphs.

Definition 1. A BISIMULATION on (V, E) is a relation b CV x V that satisfies

1) to every child vy of ugy there corresponds at least one child v1 of uy such that
vo b vy holds, and

2) to every child vi of uy there corresponds at least one child vy of ug such that
vo b v1 holds.

At this point we can define BISIMILARITY to be the relation =y, gy (or simply =)
defined between nodes u,v € V' as: u=(y, gv iff ubv holds for some bisimulation b
on (V, E). It plainly turns out that =y, g) is a bisimulation (actually, the largest
of all bisimulations) on (V, E); moreover, it is an equivalence relation over V.
The following definitions (given following [Acz88]) establish the bridge between
graphs and sets.

Definition 2. A POINTED graph G = (G,v) is a graph G = (V, E) with a dis-
tinguished node v € V' (its point) from which every node in V is E-reachable.

Definition 3. Given a set S, its MEMBERSHIP GRAPH Gg is the pointed graph
(Gs,S), where Gg = (trCI({S}), Es) with

Es = {{v,w) : v € trCI({S}) Aw € trCI({S}) Aw € v}

With a slight abuse of terminology we will say that graph G (not pointed) is
a membership graph if there exists a node s in the graph G such that (G, s) is
isomorphic to a membership graph. An acyclic membership graph corresponds
to the transitive closure of a well-founded set. Below we give two simple results
implying that bisimulation is, in fact, coherent with the extensionality principle.

Proposition 1. The membership graph of any hereditarily finite set has the
identity relation as its only bisimulation.

Any finite, acyclic, pointed graph having identity as its only bisimulation is
isomorphic to the membership graph of a hereditarily finite set.

On the basis of the above proposition, one can identify HF (i.e. the collection of
a’s such that HF(z)) with the collection of those finite, acyclic, pointed graphs
whose only bisimulation is the identity —which, in turn, is the collection of
those finite acyclic pointed graphs in which no two different nodes have the
same successor set. We can now proceed to define hypersets simply by dropping
the acyclicity requirement and using bisimulation as equality criterion.



Definition 4. A HYPERSET is (the isomorphism class of) a pointed graph on
which identity is the only bisimulation. Such an entity is said to be HEREDITAR-
ILY FINITE when it has finitely many nodes.

Recalling that the SUBGRAPH ISSUING FROM w in a graph G is the subgraph,
pointed in w, that consists of all nodes which are reachable from w in G, we can
readily introduce the membership relation between hypersets as follows.

Definition 5. Given two hypersets h and h' = (G,v), with G = (V, E) as usual,
we say that h € h' if h is (isomorphic to) the pointed subgraph of G issuing from
a node w with (v,w) € E.

The class of hereditarily finite hypersets includes the class of hereditarily
finite sets. From now on we will identify any hypersets S (possibly well-founded)
with its membership graph Gs—that is, with a representative of its isomorphism
class. Moreover, we will say that a graph (not necessarily a membership graph)
is hyper-extensional if its only bisimulation is the identity.

2 One-element elimination

Consider a hyperset S and recall that, by definition, Gg is hyper-extensional. For
any given s € trCI({S}), we denote by Gs — s the graph obtained from Gg by
eliminating s together with all the arcs incident to s. Notice that it is possible
that Gg — s is not a membership graph (e.g., the case in which s = S). As we
said in the introduction, the question we want to discuss in this note is whether,
given a hyperset S, it is always possible to find s € trCI({S}) such that Gg — s is
hyper-extensional. Clearly, if Gg is acyclic the question has a positive answer, as
Gg — S is undoubtedly hyper-extensional. However, at least in the well-founded
case, it is always possible to maintain (hyper-)extensionality even eliminating a
node s € trCl(S) in such a way that Gg — s remains a membership graph.

Proposition 2. Given a hereditarily finite set S there exists an s € trCI(S) such
that (Gs — s,S) is (isomorphic to) a membership graph.

Proof. (Sketch) We can determine s as follows: if there exist two elements of the
same rank in the transitive closure of S, let 7 be the maximum such rank and
take s to be any element in the transitive closure of S of rank r. Otherwise take
s as the empty set.

The general case in which Gg is cyclic is more challenging. First of all, we
observe that we can produce a scenario in which the only possible eliminable s
is in fact the point S.

Ezxample 1. Consider the hyperset satisfying the following system of set-theoretic
equations: S = {T}, T = {U,S}, U = {T,0}. In the above case the only
eliminable element in Gg is its point S.



The above example marks a difference between the well-founded and the non
well-founded case, as it tells us that the generalisation of Proposition 2 to the
cyclic case does not hold. However, it leaves the question open as whether, pos-
sibly by permitting the elimination of the point, it is always possible to delete a
node from Gg having the remaining graph hyper-extensional.

Definition 6. Let G&¢ be the graph having scc’s of Gs as nodes, and an arc
between A and B if and only if there exist an arc in Gg having source in A and
target in B.

Proposition 3. For any membership graph Gg, the graph G&* is acyclic and
has at most two sinks.

Even though—as we said—it is not easy to chose a notion of rank for non well-
founded sets, let the rank of A of Gg to be the length of the longest path in
G%* from A to a sink. We do not know if, given a membership graph Gg, a node
whose elimination does not disrupt hyper-extensionality always exists. However,
if this is the case, one such node must always be found in the strongly connected
component of maximal rank.

Proposition 4. If any membership graph Gs admits an s € trCl({S}) such that
Ggs — s is hyper-extensional, then there exists such an s in the strongly connected
component of Gg of maximal rank.

Proof. (Sketch) By contradiction, let C an scc of maximum rank that does not
contain any eliminable node. Represent C (that must be unique) as a labelled
graph, where labels correspond to hypersets constituting the part of the transi-
tive closure built on strongly connected components of ranks smaller than that
of C. At this point prove that a collection £ of sets exists, such that: (a) the
elements of £ can be used in place of the original labels to discriminate (sets of)
nodes in C; (b) no element in £ can be eliminated without causing a collapse,
either among nodes in £ or in C. The graph obtained from Gg maintaining C
and using £ in place of the original labels, does not admit the elimination of any
node, contradicting the hypothesis.

On the one hand, a reasonable point of view could be that a choice for an
eliminable node should be strictly tied with a definition of some notion of rank
compatible with cyclic structures. On the other hand, one could argue that on
cyclic graphs an eliminable node must be characterised by two different features:
a maximal rank—captured by the maximality of the strongly connected com-
ponent where the node must be chosen—, and a different—unknown—feature,
related with the cyclic character of the graph and guiding in the choice within
the strongly connected component.

Concluding remarks

We consider that the problem presented here is simple and elegant enough to de-
serve a (computationally well characterised) answer without any further consid-
eration. However, let us conclude by mentioning a context in which the question
tackled here was raised, and for which a (positive) answer would be beneficial.



In [PT13] the problem of generating uniformly and at random a set with a
given number of elements in its transitive closure was studied. The proposed so-
lution was based on generating extensional acyclic digraphs with a given number
of labeled vertices (since all of the n! labelings of the vertices of an extensional
acyclic digraph, or of a hyper-extensional digraph on n vertices, lead to non-
isomorphic labelled digraphs).

The results in [PT13] are based on a Markov chain Monte Carlo-based algo-
rithm, initially proposed for generating acyclic digraphs [MDBMO01,MP04]. The
key fact needed in order to show that the Markov chain converges to the uniform
distribution were the irreducibility, aperiodicity, and symmetry of the chain. The
idea exploited in the construction of the Markov chain was to show that a pair
of elementary operations on graphs (implemented as basic transition rules of the
Markov chain, akin to the elimination of a node) could be used to transform any
graph G into another graph G’ within the same family.

Even though this problem was later solved in [RT13] by a deterministic al-
gorithm based on a combinatorial decomposition (and a resulting counting re-
currence), as mentioned above, we are far from having such a counter-part for
hyper-extensional digraphs. However, a positive answer to the question posed in
this note would allow one to extend the Markov chain Monte Carlo technique to
the realm of hypersets, which would be the first result of its kind.
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