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Abstract. Constrained global types are a powerful means to represent
agent interaction protocols. In our recent research we demonstrated that
they can be used to represent complex protocols in a very compact way,
and we exploited them to dynamically verify correct implementation of a
protocol in a real MAS framework, Jason. The main drawback of our pre-
vious approach is the full centralization of the monitoring activity which
is delegated to a unique monitor agent. This approach works well for
MASs with few agents, but could become unsuitable in communication-
intensive and highly-distributed MASs where hundreds of agents should
be monitored.

In this paper we define an algorithm for projecting a constrained global
type onto a set of agents Ags, by restricting it to the interactions in-
volving agents in Ags, so that the outcome of the algorithm is another
constrained global type that can be safely used for verifying the compli-
ance of the sub-system Ags to the protocol specified by the original con-
strained global type. The projection mechanism is implemented in SWI
Prolog and is the first step towards distributing the monitoring activity,
making it safer and more efficient: the compliance of a MAS to a protocol
could be dynamically verified by suitably partitioning the agents of the
MAS into small sets of agents, and by assigning to each partition Ags a
local monitor agent which checks all interactions involving Ags against
the projected constrained global type. We leave for further investigation
the problem of finding suitable partitions of agents in a MAS, to guar-
antee that verification through projected types and distributed agents is
equivalent to verification performed by a single centralized monitor with
a unique global type.
Keywords: Constrained Global Type, Projection, Dynamic Verification,
Agent Interaction Protocol, SWI Prolog

? The long version of this paper appears in the informal proceedings of the Second
International Workshop on Engineering Multi-Agent Systems (EMAS 2014) with
title “Efficient Verification of MASs with Projections”. This is the shortened version
presented at CILC 2014.



1 Introduction and Motivation

Distributed monitoring of agent interaction protocols is interesting for various
reasons. First, the distribution of monitoring reduces the bottleneck issue due
to the potentially high number of communications between the central monitor
and the agents of the system. Consequently, the communications are localized
according to the distribution topology (how many local monitors are available
and where they are localized in the system), improving the efficiency of the
monitoring. As usual, distribution increases the robustness of the whole system
and prevents for a breakdown, crash or failure of the system. In particular,
in the context of distributed environments, having a robust monitoring system
requires to distribute the monitoring on several agents which ensure their prompt
reaction to events. In addition, the distributed approach is more suitable than
the centralized one for asynchronous and/or distributed contexts.

In order to distribute the monitoring activity, the first step to face is to
distribute the specification of the global interaction protocol in such a way that
a subset of agents can monitor a subset of the interactions, still respecting the
constraints stated by the global protocol.

In this paper, we address this first step by defining and implementing an
algorithm for projecting the protocol representation onto subsets of agents, and
then allowing interactions taking place within these subsets to be monitored
by local monitors. Automatically identifying these subsets of agents in order to
guarantee that the distributed monitoring behaves like the centralized one goes
beyond the aims of this paper, but is matter of our current research activity.

Another interesting issue concerns dynamic redistribution of monitoring agents;
even if not explored in this work, projected types could be recomputed dynam-
ically to balance the load among local monitors depending on the currently
available resources, and according to some “meta-protocol”.

The formalism that we exploit for representing and dynamically verifying
agent interaction protocols, is constrained global types [2]. Global types [4] are
behavioral types for specifying and verifying multiparty interactions between
distributed components. We took inspiration from global types to propose “con-
strained global types”, suitable for representing agent interaction protocols. They
are based on interactions, namely communicative events between two agents; in-
teraction types, modeling the message pattern expected at a certain point of the
conversation; producers and consumers which allow us to express constrained
shuffle of interaction traces. On top of these components, type constructors are
used to model sequences, choices, concatenation and shuffle of protocols.

In our recent research we demonstrated that constrained global types can be
used to represent complex protocols in a very compact way, and we exploited
them to detect deviations from the protocol in a real MAS framework based on
logic programming, Jason [1], and in the Java-based JADE framework1, thanks
to a bidirectional Java-Prolog interface [3]. Extensions of the original formalism
with attributes have been described [5] and exploited to model a complex, real

1 http://jade.tilab.com/.



protocol in the railway domain [6]. The integration of these This paper shows how
a constrained global type can be projected onto a set of agents Ags, obtaining
another constrained global type which contains only interactions involving agents
in Ags. Although the projection is always possible, this does not mean that it
is always useful: as an example, the Alternating Bit Protocol discussed in this
paper can be projected onto any individual agent in the MAS, but needs to be
monitored in a centralized way to verify all its constraints.

The paper is organized in the following way: Section 2 briefly overviews the
state of the art in distributing the monitoring activity of complex systems; Sec-
tion 3 gives the technical background on constrained global types needed for
presenting the projection algorithm in Section 4, Section 5 describes the imple-
mentation of the algorithm in SWI Prolog, Section 6 describes the algorithm at
work, and Section 7 concludes.

2 State of the art

Many frameworks and formalism for monitoring the runtime execution of a dis-
tributed system have been proposed in the last years.

One of the most recent and relevant works in this area is SPY (Session
Python) [7], a tool chain for runtime verification of distributed Python programs
against Scribble (http://www.scribble.org) protocol specifications. Scribble is a
language to describe application-level protocols among communicating systems
initially proposed by Kohei Honda. Given a Scribble specification of a global
protocol, the SPY tool chain validates consistency properties, such as race-free
branch paths, and generates Scribble (i.e. syntactic) local protocol specifications
for each participant (role) defined in the protocol. At runtime, an independent
monitor (internal or external) is assigned to each Python endpoint and veri-
fies the local trace of communication actions executed during the session. This
work shares the same motivations and approach with our work, and like our
work concentrates on the projection of the global type to the local one rather
than on the criteria for identifying in an automatic way how to distribute the
monitoring activity. The main differences lie in the expressive power of the two
languages, which is higher for constrained global types due to the constrained
shuffle operator which is missing in Scribble, and in the availability of tools for
statically verifying properties of Scribble specifications, which are not available
for constrained global types.

Many other approaches for runtime monitoring of distributed systems and
MASs exist, but with no emphasis on the projection from global to local moni-
tors. This represents the main difference between those proposals and ours; the
long version of this paper provides a detailed overview of many recent ones.



3 Background

This section briefly recaps on constrained global types, omitting their extension
with attributes [5] because the projection algorithm discussed in Section 4 is
currently defined on “plain” constrained global types only.

Constrained global types (also named “types” in the sequel, when no ambi-
guity arises) are defined starting from the following elements:

Interactions2. An interaction a is a communicative event taking place between
two agents. For example, msg(right robot, right monitor, tell, put sock)

is an interaction involving the sender right robot and the receiver right monitor,
with performative tell and content put sock.

Interaction types. Interaction types model the message pattern expected at a
certain point of the conversation. An interaction type α is a predicate on inter-
actions. For example, msg(right robot, right monitor, tell, put sock) ∈
put right sock means that interaction msg(right robot, right monitor, tell,

put sock) has type put right sock.

Producers and consumers. In order to model constraints across different
branches of a constrained fork, we introduce two different kinds of interaction
types, called producers and consumers, respectively. Each occurrence of a pro-
ducer interaction type must correspond to the occurrence of a new interaction;
in contrast, consumer interaction types correspond to the same interaction speci-
fied by a certain producer interaction type. The purpose of consumer interaction
types is to impose constraints on interaction traces, without introducing new
events. A consumer is an interaction type, whereas a producer is an interaction
type α equipped with a natural superscript n specifying the exact number of
consumer interactions which are expected to coincide with it.

Constrained global types. A constrained global type τ represents a set of
possibly infinite traces of interactions, and is a possibly cyclic term defined on
top of the following type constructors:

– λ (empty trace), representing the singleton set {ε} containing the empty
trace ε.

– αn:τ (seq-prod), representing the set of all traces whose first element is an
interaction a matching type α (a ∈ α), and the remaining part is a trace
in the set represented by τ . The superscript3 n specifies the number n of
corresponding consumers that coincide with the same interaction type α;
hence, n is the least required number of times a ∈ α has to be “consumed”
to allow a transition labeled by a.

– α:τ (seq-cons), representing a consumer of interaction a matching type α
(a ∈ α).

– τ1 + τ2 (choice), representing the union of the traces of τ1 and τ2.

2 “Interactions” were named “sending actions” in our previous work. We changed
terminology to be consistent with the one used in the choreography community.

3 In the examples throughout the paper we use the concrete syntax of Prolog where
producer interaction types are represented by pairs (α,n).



– τ1|τ2 (fork), representing the set obtained by shuffling the traces in τ1 with
the traces in τ2.

– τ1 · τ2 (concat), representing the set of traces obtained by concatenating the
traces of τ1 with those of τ2.

Constrained global types are regular terms, that is, can be cyclic (recursive),
and they can be represented by a finite set of syntactic equations. We limited
our investigation to types that have good computational properties, namely con-
tractiveness and determinism.

Since constrained global types are interpreted coinductively, it is possible to
specify protocols that are not allowed to terminate like for example the PingPong
protocol defined by the equation

PingPong = (ping,0):(pong,0):PingPong

where PingPong is a logical variable which is unified with a recursive (or cyclic,
or infinite) Prolog term consisting of the producer interaction type ping, followed
by the producer interaction type pong (both requiring 0 consumers), followed
by the term itself. The only valid interaction trace respecting this constrained
global type is the infinite sequence ping pong ping pong ping pong .... The
valid traces for the type

PingPong = ((ping,0):(pong,0):PingPong + lambda)

instead, are {ε, ping pong, ping pong ping pong, ...}, namley all the traces
consisting of an arbitrary number (even none or infinite) of ping pong.

Let us consider the following simple example where there are two robots
(right and left), two monitors (right and left) associated with each robot, and a
plan monitor which supervises them (Figure 1). The goal of the MAS is to help

Fig. 1. The “socks and shoes” MAS

mothers in speeding up dressing their kids by putting their shoes on: robots must
put a sock and a shoe on the right (resp. left) foot of the kid they help. As robots
are autonomous, they could perform the two actions in the wrong order, making
the life of the mothers even more crazy... Monitors are there to ensure that wrong
actions are immediately rolled back. Robots communicate their actions to their
corresponding monitors, which, in turn, notify the plan monitor when the robots
accomplish their goal. Each robot can start by putting the sock, which is the



correct action to do, or by putting the shoe, which requires a recovery by the
(right or left, resp.) robot monitor.

As we will see, the left and right monitors play two different roles: they inter-
act with robots to detect wrong actions and recover them, and they also verify
part of the protocol, notifying the user of protocol violations. In this MAS, mon-
itors are part of the protocol itself. In the MASs described in our previous papers,
monitors performed a runtime verification of all the other agents but themselves,
and their sole goal was to detect and signal violations. Extending monitors with
other capabilities (or, taking another perspective, extending “normal” agents
with the capability to monitor part of the protocol) does not represent an ex-
tension of the language or framework. The possibility of having agents that can
monitor, can be monitored, and can perform whatever other action, was already
there, but we did not exploit it before.

The interactions involved in the protocol and their types are as follows:

msg(right robot, right monitor, tell, put sock) ∈ put right sock

msg(right robot, right monitor, tell, put shoe) ∈ put right shoe

msg(right robot, right monitor, tell, removed shoe) ∈ rem right shoe

msg(right monitor, right robot, tell, obl remove shoe) ∈ obl rem right shoe

msg(right monitor, plan monitor, tell, ok) ∈ ok right

msg(left robot, left monitor, tell, put sock) ∈ put left sock

msg(left robot, left monitor, tell, put shoe) ∈ put left shoe

msg(left robot, left monitor, tell, removed shoe) ∈ rem left shoe

msg(left monitor, left robot, tell, obl remove shoe) ∈ obl rem left shoe

msg(left monitor, plan monitor, tell, ok) ∈ ok left

The protocol can be specified by the following types, where SOCKS corre-
sponds to the whole protocol.

RIGHT = ((put right sock,0):(put right shoe,0):(ok right,0):lambda) +

((put right shoe,0):(obl rem right shoe,0):(rem right shoe,0):RIGHT),

LEFT = ((put left sock,0):(put left shoe,0):(ok left,0):lambda) +

((put left shoe,0):(obl rem left shoe,0):(rem left shoe,0):LEFT),

SOCKS = (RIGHT | LEFT)

The type SOCKS specifies the shuffle (symbol “|”) of two sets of traces of inter-
actions, corresponding to RIGHT and LEFT, respectively. The shuffle expresses the
fact that interactions in RIGHT are independent (no causality) from interactions
in LEFT, and hence traces can be mixed in any order.

Types RIGHT and LEFT are defined recursively, that is, they correspond to
cyclic terms. RIGHT consists of a choice (symbol “+”) between the finite trace
(the constructor for trace is “:”) of interaction types (put right sock,0), (put-
right shoe,0), (ok right,0) corresponding to the correct actions of the right

robot, and the trace of interaction types (put right shoe,0), (obl rem right-

shoe,0), (rem right shoe,0) corresponding to the wrong initial action of the
robot, followed by an attempt to perform the RIGHT branch again. Basically,
either the right robot tells the right monitor that it put the sock on first, and
then it can go on by putting the shoe, or it tells that it started its execution by



putting the shoe on. In this case, the right monitor forces the robot to remove the
shoe, the robot acknowledges that it removed the shoe, and then starts again.
The LEFT branch is the same as the RIGHT one, but involves the left robot and
the left node monitor.

An example where sets of traces could be expressed with a fork, but are
not completely independent, is given by the Alternating Bit Protocol ABP. We

Fig. 2. The ABP3 MAS

consider the instance of ABP where six different sending actions may occur
(Figure 2): Bob sends msg1 to Alice (interaction type m1), Alice sends ack1 to
Bob (sending action type a1), Bob sends msg2 to Carol (interaction type m2),
Carol sends ack2 to Bob (sending action type a2), Bob sends msg3 to Dave
(interaction type m3), Dave sends ack3 to Bob (interaction type a3) The ABP
is an infinite iteration, where the following constraints have to be satisfied for
all occurrences of the sending actions:

– The n-th occurrence of an interaction of type m1 must precede the n-th
occurrence of an interaction of type m2 which in turn must precede the n-th
occurrence of an interaction of type m3.

– For k ∈ {1, 2, 3}, the n-th occurrence of msgk must precede the n-th oc-
currence of the acknowledge ackk, which, in turn, must precede the (n + 1)-th
occurrence of msgk .

The ABP cannot be specified with forks of independent interactions, hence
a possible solution requires to take all the combinations of interactions into
account in an explicit way. However with this solution the size of the type grows
exponentially with the number of the different interaction types involved in the
protocol.

With producer and consumer interaction types it is possible to express the
shuffle of non independent interactions which have to verify certain constraints.
In this way the ABP can be specified in a very compact and readable way. The
whole protocol is specified by the following constrained global type ABP3:

M1M2M3=m1:m2:m3:M1M2M3, M1A1=(m1,1):(a1,0):M1A1,

M2A2=(m2,1):(a2,0):M2A2, M3A3=(m3,1):(a3,0):M3A3,

ABP3=((M1M2M3|M1A1)|(M2A2|M3A3))

Fork is associative and the way we put brackets in ABP3 does not matter.



4 Projection Algorithm

In the “socks and shoes” example the monitors, besides checking that the robots
accomplish their goal, verify also the compliance of the system to the specifica-
tion of the protocol, given by the type SOCKS. If we assume that the right robot
and the right monitor reside on the same node, then it is reasonable that the
right monitor verifies only the interactions which are local to its node; to do
that, we must project the type SOCKS onto the agents of the node, that is, the
right robot and the right monitor.

What we would like to obtain is the type

RIGHT P = ((put right sock,0):(put right shoe,0):(ok right,0):lambda) +

((put right shoe,0):(obl rem right shoe,0):(rem right shoe,0):RIGHT P),

SOCKS P = (RIGHT P|lambda)

which only contains interactions where the right robot and the right monitor are
involved, either as sender or as receiver.

We can project any protocol onto any set of agents (although it is not nec-
essarily meaningful or useful). For example, projecting the ABP3 on Dave should
result into

ABP3 P compact = (m3,0):(a3,0):ABP3 P compact

which just states that Dave must ensure to respect the order between messages
and acknowledges that involve it (Dave cannot be aware of the order among
messages coming from other agents). That projected type can be represented in
an equivalent way, even if less compact, as

M1M2M3 P = m3:M1M2M3 P,

M3A3 P = (m3,1):(a3,0):M3A3 P,

ABP3 P =((M1M2M3 P|lambda)|(lambda|M3A3 P))

Projecting the ABP3 on Bob, instead, should result into the ABP3 itself as
Bob is involved in all communications and hence no interaction will be removed
from the projection.

In order to allow agents to verify only a sub-protocol of the global interaction
protocol, we designed a projection algorithm that takes a constrained global type
and a set of agents Ags as input, and returns a constrained global type which
contains only interactions involving agents in Ags. The intuition besides the
algorithm is that interactions that do not involve agents in Ags are removed from
the projected constrained global type. Given the finite set AGS of all the agents
that could play a role in the MAS and an interaction type α, senders(α) is the set
of all the agents in AGS that could play the role of sender in actual interactions
having type α and receivers(α) is the set of all the agents in AGS that could play
the role of receiver in interactions of type α. The involves predicate holds on one
interaction type α and one set of agents Ags, involves(α,Ags), iff senders(α) ⊆
Ags ∨ receivers(α) ⊆ Ags.



Projection can be described as a function Π : CT×P(AGS)→ CT where CT

is the set of constrained global types. Π is driven by the syntax of the type to
project; as a first attempt, the function could be coinductively defined as follows:

(i) Π(λ,Ags) = λ
(ii) Π(α : τ,Ags) = α : Π(τ,Ags) if involves(α,Ags)
(iii) Π(α : τ,Ags) = Π(τ,Ags) if ¬involves(α,Ags)
(iv) Π(τ ′ op τ ′′, Ags) = Π(τ ′, Ags) op Π(τ ′′, Ags), where op ∈ {+, |, ·}.
We have to consider the greatest fixed point (coinductive interpretation) of

the recursive definition above, since the least fixed point (inductive interpreta-
tion) would only include non cyclic types (that is, non recursive types).

Let us consider a simple non recursive term T defined by T = a : b : λ.
We want to project T on Ags. Suppose for that involves(a,Ags) holds, whereas
involves(b, Ags) does not, meaning that interaction type a must be kept in the
projection and b must be removed. From (ii) we get Π(a : b : λ,Ags) = a : Π(b :
λ,Ags) (a is kept in the projection), from (iii) we have Π(b : λ,Ags) = Π(λ) (b
is discarded from the projection), and finally, from (i) we know that Π(λ) = λ,
therefore Π(T,Ags) = a : λ.

Fig. 3. Projection of recursive types.

Let us now consider the recursive type T s.t. T = a : T ′ and T ′ = b : T .
Again, the projection is driven by the syntax of T ; from the definition above we
have Π(a : T ′, Ags) = a : Π(T ′, Ags) = a : Π(b : T,Ags) = a : Π(T ) = a : Π(a :
T ′, Ags); while in the previous case we can conclude by applying the base case
corresponding to the λ type, in this case we do not have any basis, but we can
conclude by coinduction that Π(a : T ′, Ags) has to return the unique recursive
type T ′′ s.t. T ′′ = a : T ′′ (see lhs picture in Figure 3).

The definition above however needs to be refined because it does not always
specify a unique result for Π; to see that, let us consider the recursive type
T s.t. T = a : T ′ and T ′ = b : T ′. Now from the definitions above we get
Π(a : T ′, Ags) = a : Π(T ′, Ags), Π(T ′, Ags) = Π(b : T ′, Ags) = Π(T ′, Ags);
since Π(T ′, Ags) = Π(T ′, Ags) is an identity, Π is allowed to return any type
when applied to T ′, while the expected correct type should be λ, so that Π(a :
T ′, Ags) = a : λ (see rhs picture in Figure 3).

Finally, let us consider the recursive type T s.t. T = (a : T ) + (b : T ); by
(iv) Π(T,Ags) = Π(a : T,Ags) + Π(b : T,Ags), by (ii) Π(a : T,Ags) = a :
Π(T,Ags), and by (iii) Π(b : T,Ags) = Π(T,Ags), therefore by coinduction the
returned type is T ′ s.t. T ′ = (a : T ′) + T ′; although in this case there exists
a unique type that can returned by Π, such a type is not contractive. A type
is contractive if all possible cycles in it contain an occurrence of the sequence



constructor “:”; Figure 4 shows that type T ′ s.t. T ′ = (a : T ′) + T ′ is not
contractive, since the rhs cycle contains only the “+” operator. The notion of

Fig. 4. Non-contractive type T ′ = (a : T ′) + T ′

contractive type is crucial for implementing efficient runtime verification.
To ensure that the projection function always returns a contractive type and

that the correct coinductive definition is implemented, we need to keep track of
all types visited along a path; each type is associated with its depth, and with a
fresh variable which will be unified with the corresponding computed projection.
During the visit the depth DeepestSeq of the deepest visited sequence operator
is kept. If a type τ has been already visited, then a cycle is detected: if its depth
is less then DeepestSeq then the cycle contains an occurrence of the sequence
constructor, therefore the projected type associated with τ is contractive and,
hence, is returned; otherwise, the projection would not be contractive, therefore
λ is returned.

Let us consider again the type T = (a : T ) + (b : T ); when computing its
projection, the depth of T is 0, and initially DeepestSeq contains the value -1.
When visiting the lhs path starting from the “+” operator, the type a : T is
visited at depth 1, and DeepestSeq is set to 1, since the root of a : T is the
sequence constructor. Then T is revisited, and since its depth 0 is less then
DeepestSeq, the projection of the lhs is T ′ = a : T ′. When visiting the rhs path
starting from the “+” operator, DeepestSeq contains again the value -1, and the
type b : T is visited at depth 1, but because involves(b, Ags) does not hold, b is
discarded with the corresponding sequence constructor, hence DeepestSeq is not
updated. Then T is revisited, and since its depth 0 is not less then DeepestSeq,
the projection of the rhs is λ.

5 Implementation

The projection algorithm has been implemented in SWI Prolog, http://www.swi-
prolog.org/, which manages infinite (cyclic, recursive) terms in an efficient way.
Since we need to record the association between any type and its projection in
order to correctly detect and manage cycles, we exploited the SWI Prolog library
assoc for association lists, http://www.swi-prolog.org/pldoc/man?section=assoc.
Elements of an association list have 2 components: a (unique) key and a value.
Keys should be ground, values need not be. An association list can be used to



fetch elements via their keys and to enumerate its elements in ascending order
of their keys. The library(assoc) module uses AVL trees to implement asso-
ciation lists which makes inserting, changing and fetching a single element an
O(log(N)) operation. The three predicates of the library assoc that we use for
our implementation are

– empty assoc(-Assoc): Assoc is unified with an empty association list.
– get assoc(+Key, +Assoc, ?Value): Value is the value associated with Key

in the association list Assoc.
– put assoc(+Key, +Assoc, +Value, ?NewAssoc): NewAssoc is an association

list identical to Assoc except that Key is associated with Value. This can be
used to insert and change associations.

The projection is implemented by a predicate project(T, ProjAgs, ProjT)

where T is the constrained global type to be projected, ProjT is the result,
and ProjAgs is the set of agents onto which the projection is performed. The
algorithm exploits the predicate involves(IntType, ProjAgs) succeeding if
IntType may involve one agent, as a sender or a receiver, in ProjAgs.

Currently involves looks for actual interactions ActInt whose type is IntType
and assumes that senders and receivers in ActInt are ground terms, but it could
be extended to take agents’ roles into account or in other more complex ways. It
uses the “or” Prolog operator ; and the member predicate offered by the library
lists. It exploits the predicate has type(ActInt, IntType) implementing the
definition of the type IntType of an actual interaction ActInt.

involves(IntType, List) :-

has type(msg(Sender, Receiver, , ), IntType),

(member(Sender, List);member(Receiver, List)).

For the implementation of project/3 we use an auxiliary predicate project

with six arguments, which are the same as those of the main predicate plus

– an initially empty association A to keep track of cycles;
– the current depth of the constrained global type under projection, initially

set to 0;
– the depth of the deepest sequence operator belonging to the projected type,

initially set to -1.

project(T, ProjAgs, ProjT) :-

empty assoc(A), project(A, 0, -1, T, ProjAgs, ProjT).

The predicate is defined by cases.

1. lambda is projected into lambda.

project( Assoc, Depth, DeepestSeq, lambda, ProjAgs, lambda):- !.

2. If Type has been already met while projecting the global type (get assoc(Type,

Assoc, (AssocProjType,LoopDepth)) succeeds), then its projection ProjT

is AssocProjType if LoopDepth =< DeepestSeq and is lambda otherwise.



The “if-then-else” construct is implemented in Prolog as Condition ->

ThenBranch ; ElseBranch.

project(Assoc, Depth, DeepestSeq, Type, ProjAgs, ProjT) :-

get assoc(Type,Assoc,(AssocProjType,LoopDepth)),!,

(LoopDepth =< DeepestSeq -> ProjT=AssocProjType; ProjT=lambda).

3. T = (IntType:T1). IntType is a consumer as it has no integer number as-
sociated with it. ProjT is recorded in the association A along with the current
depth Depth (put assoc((IntType:T1),Assoc,(ProjT,Depth),NewAssoc)).
If IntType involves ProjAgs, ProjT=(IntType:ProjT1) where ProjT1 is ob-
tained by projecting T1 onto ProjAgs, with association NewAssoc, depth of
the type under projection increased by one, and depth of the deepest se-
quence operator equal to Depth. If IntType does not involve ProjAgs, then
the projection on T is the same of T1 with association NewAssoc, depth of
the type under projection equal to Depth, and depth of the deepest sequence
operator equal to DeepestSeq.

project(Assoc, Depth, DeepestSeq, (IntType:T1), ProjAgs, ProjT) :- !,

put assoc((IntType:T1),Assoc,(ProjT,Depth),NewAssoc),

(involves(AMsg, ProjAgs) ->

IncDepth is Depth+1,

project(NewAssoc,IncDepth,Depth,T1,ProjAgs,ProjT1),

ProjT=(IntType:ProjT1);

project(NewAssoc,Depth,DeepestSeq,T1,ProjAgs,ProjT)).

4. T = ((IntType,N):T1). (IntType,N) is a producer as it has an integer
number N associated with it. The projection is identical to the previous case,
apart from the fact that ProjT=((IntType,N):ProjT1) in the first branch
of the condition in the clause’s body.

5. T = T1 op T2, where op ∈ {+, |, *}: the association between T1 op T2

and the projected type ProjT is recorded in the association Assoc along
with the current depth Depth, T1 and T2 are projected into ProjT1 and
ProjT2 respectively, with association equal to NewAssoc, depth of the type
under projection increased by one and depth of the deepest sequence opera-
tor equal to DeepestSeq. The result of the projection is ProjT=(ProjT1 op

ProjT2). For example, if op is +, the Prolog clause is:

project(Assoc, Depth, DeepestSeq, (T1+T2), ProjAgs, ProjT) :- !,

put assoc((T1+T2),Assoc,(ProjT,Depth),NewAssoc),

IncDepth is Depth+1,

project(NewAssoc, IncDepth, DeepestSeq, T1, ProjAgs, ProjT1),

project(NewAssoc, IncDepth, DeepestSeq, T2, ProjAgs, ProjT2),

ProjT=(ProjT1+ProjT2).

Types SOCKS P and AP3 P shown at the beginning of Section 4 have been
obtained by applying the projection algorithm to types SOCKS and ABP3 respec-
tively. The reason why they are not as compact as possible, which is mainly
evident in AP3 P, is that the projection algorithm does not implement a further



normalization step and hence some types which have been projected into lambda

and might be removed, are instead kept.
The result of the projection may be a type equivalent to lambda. For exam-

ple, if we project ABP to the set {eric}, no interaction involves it and the result
is (lambda|lambda)|lambda|lambda. On the other hand, we have already ob-
served that the projection may be the same as the projected type. This happens
for example if we project ABP to the set {bob}, which interacts with all the agents
in the MAS.

6 Projection at Work

In SWI Prolog we have implemented a mechanism for generating all the different
traces (sequences of interactions) with length N, where N can be set by the
user, that respect a given protocol. This mechanism is necessary during the
design of the protocol and allows the protocol designer to make an empirical
assessment of the conversations that will be recognized as valid ones during the
runtime verification. We used this mechanism for validating both the complete
protocols and the projected ones; also with projected types, the generated traces
are correct w.r.t. the protocol specification.

For example, Table 1 (top left) shows one of the 16380 different traces with
length 12 of the SOCKS protocol and Table 1 (top right) shows one of the 2 differ-
ent traces with length 12 of the SOCKS protocol projected onto {right robot,

right monitor} (for sake of presentation, we abbreviate right robot in right r,
right monitor in right m, left robot in left r, left monitor in left m, msg
in m, and we drop the tell performative from interactions). Both traces corre-
spond to an execution where the protocol reached a final state and no other
interactions could be accepted after the last one. In the output produced by the
SWI Prolog algorithm, this information is given by means of an asterisk after
the last interaction. Traces that are prefixes of longer (maybe infinite) ones have
no asterisk at their end.

Table 1 (bottom left) shows an excerpt of one of the 30713 different traces
with length 16 of the ABP3 protocol and Table 1 (bottom right) shows the first
12 interactions of the only trace with length 16 of the ABP3 protocol projected
onto {dave}. Since the ABP3 is an infinite protocol, both traces are prefixes of
infinite ones.

By generating traces of different length and inspecting some of them, the pro-
tocol designer can get a clear picture of whether the protocol he/she designed
behaves in the expected way. Of course this manual inspection gives no guaran-
tees of correctness, but in our experience it was enough to early detect flaws in
the protocol specification.

We have implemented the “socks and shoes” MAS in Jason. The MAS is
represented in Figure 1. We projected the SOCKS constrained global type shown
in Section 3 onto the three sets of agents {left monitor}, {right monitor} and
{plan monitor}. The three resulting constrained global types are used by agents
left monitor, right monitor and plan monitor respectively.



SOCKS protocol SOCKS protocol projected onto
{right robot, right monitor}

m(right r, right m, put sock)

m(left r, left m, put shoe)

m(left m, left r, oblige remove shoe)

m(left robot, left m, removed shoe)

m(right r, right m, put shoe)

m(right m, plan monitor, ok)

m(left robot, left m, put shoe)

m(left m, left r, oblige remove shoe)

m(left r, left m, removed shoe)

m(left r, left m, put sock)

m(left r, left m, put shoe)

m(left m, plan monitor, ok)

m(right r, right m, put shoe)

m(right m, right r, oblige remove shoe)

m(right r, right m, removed shoe)

m(right r, right m, put shoe)

m(right m, right r, oblige remove shoe)

m(right r, right m, removed shoe)

m(right r, right m, put shoe)

m(right m, right r, oblige remove shoe)

m(right r, right m, removed shoe)

m(right r, right m, put sock)

m(right r, right m, put shoe)

m(right m, plan monitor, ok)

ABP3 protocol ABP3 protocol projected onto {dave}
msg(bob, alice, tell, m1)

msg(bob, carol, tell, m2)

msg(carol, bob, tell, a2)

msg(alice, bob, tell, a1)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, alice, tell, m1)

msg(bob, carol, tell, m2)

msg(alice, bob, tell, a1)

msg(bob, dave, tell, m3)

msg(bob, alice, tell, m1)

msg(carol, bob, tell, a2)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

msg(bob, dave, tell, m3)

msg(dave, bob, tell, a3)

Table 1. Examples of traces compliant with complete and projected protocols.

Each of these agents monitors all the messages that it either receives or sends,
using the “message sniffing” mechanism described in [1].

We run different experiments by changing the actual messages sent by the
agents in the MAS, in order to obtain both correct and wrong executions. All
our experiments gave the expected outcome. As an example, Figure 5 shows an
interaction where left robot sends a put boot message instead of put shoe,
which is correctly identified by the left monitor as a violation. The conversation
between the other agents goes on.

7 Conclusions and Future Work

In this paper we have defined an algorithm for projecting a constrained global
type onto a set of agents Ags, to allow distributed dynamic verification of the
compliance of a MAS to a protocol. This is important in communication-intensive
and highly-distributed large MASs, where a centralized approach with a unique
monitoring agent would be unfeasible.



Fig. 5. The left robot violates the protocol.

Besides describing the algorithm and its SWI Prolog implementation, we
have shown some preliminary experiments in Jason with the running example
“socks and shoes” where two local monitors with projected types are sufficient
for verifying the whole system.

For what concerns future work, we are investigating on the possible ways
to partition the set of agents for projecting types, to minimize the number of
monitors, while ensuring safety of dynamic verification.

We are also planning to extend the projection algorithm in order to be able
to properly deal with a more general form of type: attribute global types.

Finally, in the examples considered in this paper, types are projected stat-
ically (that is, before the system is started) because we have assumed that
agents cannot move between nodes, but monitoring would be also possible in
the presence of agent mobility. However, in this case the implementation of a
self-monitoring MAS is more challenging, because monitor agents have to dy-
namically project the global type in reaction to any change involving the set of
monitored agents. Tackling scenarios of this kind is the final goal of our research.
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