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Abstract. In real-world supervised Machine Learning tasks, the learned
theory can be deemed as valid only until there is evidence to the con-
trary (i.e., new observations that are wrongly classified by the theory).
In such a case, incremental approaches allow to revise the existing the-
ory to account for the new evidence, instead of learning a new theory
from scratch. In many cases, positive and negative examples are pro-
vided in a mixed and unpredictable order, which requires generalization
and specialization refinement operators to be available for revising the
hypotheses in the existing theory when it is inconsistent with the new
examples. The space of Datalog Horn clauses under the OI assumption
allows the existence of refinement operators that fulfill desirable proper-
ties. However, the versions of these operators currently available in the
literature are not able to handle some refinement tasks. The objective of
this work is paving the way for an improved version of the specialization
operator, aimed at extending its applicability.

1 Introduction

Supervised Machine Learning approaches based on First-Order Logic represen-
tations are particularly indicated in real-world tasks in which the relationships
among objects play a relevant role in the definition of the concepts of interest.
Given an initial set of examples, a theory can be learned from them by providing
a learning system with the whole ‘batch’ of examples. However, being inductive
inference only falsity preserving, the learned theory can be deemed as valid only
until there is evidence to the contrary (i.e., new observations that are wrongly
classified by the theory). In such a case, either a new theory is to be learned from
scratch using the new batch made up of both the old and the new examples, or
the existing theory must be incrementally revised to account for the new evi-
dence as well. To distinguish these two stages, we may call them ‘training’ and
‘tuning’, respectively. In extreme cases, the initial batch is not available at all,
and learning must start and proceed incrementally from scratch. In many real
cases, positive and negative examples are provided in a mixed and unpredictable
order to the tuning phase, which requires two different refinement operator to be
available for revising the hypotheses in the existing theory when it is inconsistent



with the new examples. A generalization operator is needed to refine a hypothe-
sis that does not account for a positive example, while a specialization operator
must be applied to refine a hypothesis that erroneously accounts for a negative
example. So, the kind of modifications that are applied to the theory change
its behavior non-monotonically. The research on incremental approaches is not
very wide, due to the intrinsic complexity of learning in environments where the
available information about the concepts to be learned is not completely known
in advance, especially in a First-Order Logic (FOL) setting. Thus, the literature
published some years ago still represents the state-of-the-art for several aspects
of interest.

The focus of this paper is on supervised incremental inductive learning of
logic theories from examples, and specifically on the extension of existing spe-
cialization operators. Indeed, while these operators have a satisfactory behavior
when trying to add positive literals to a concept definition, the way they handle
the addition of negative information has some shortcomings that, if solved, would
allow a broader range of concepts to be learned. Here we point out these short-
comings, and propose both improvements of the existing operator definitions,
and extensions to them. Theoretical results on the new version of the operator
are sketched, and an algorithm for it is provided and commented. The solution
has been implemented and embedded in the multistrategy incremental learning
system InTheLEx [3]. The next section lays the logic framework in which we
cast our proposal; then, Sections 3 and 4 introduce the learning framework in
general and the state-of-the-art specialization operator for it in particular. Sec-
tion 5 describes our new proposal, and finally Section 6 concludes the paper.
Due to lack of space, proofs of theoretical results will not be provided.

2 Preliminaries

The logic framework in which we build our solution exploits Datalog [1, 4] as
a representation language. Syntactically, it can be considered as a sublanguage
of Prolog in which no function symbols are allowed. I.e., a Datalog term can
only be a variable or a constant, which avoids potentially infinite nesting in
terms and hence simplifies clause handling by the operators we will define in
the following. The missing expressiveness of function symbols can be recovered
by Flattening [9], a representational change that transforms a set of clauses
containing function symbols into another, semantically equivalent to it, made up
of function-free clauses1. In a nutshell, each n-ary function symbol is associated
to a new (n+1)-ary predicate, where the added argument represents the function
result. Functions are replaced, in the literals in which they appear, by variables
or constants representing their result.

In the following, we will denote by body(C) and head(C) the set of literals
in the body and the atom in the head of a Horn clause C, respectively. Pure

1 Flattening potentially generates an infinite function free program. This is not our
case, where we aim at learning from examples, and thus our universe is limited by
what we see in the examples.



Datalog does not allow the use of negation in the body of clauses. A first way to
overcome this limitation is the Closed World Assumption (CWA): if a fact does
not logically follows from a set of Datalog clauses, then we assume its negation
to be true. This allows the deduction of negative facts, but not their use to infer
other information. Conversely, real world description often needs rules containing
negative information. Datalog¬ allows to use negated literals in clauses body, at
the cost of a further safety condition: each variable occurring in a negated literal
must occur in another positive literal of the body too.

Since there can be several minimal Herbrand models instead of a single a
least one, CWA cannot be used. In Stratified Datalog¬ this problem is solved by
partitioning a program P in n sets P i (called layers) s.t.:

1. all rules that define the same predicate in P are in the same layer;
2. P 1 contains only clauses without negated literals, or whose negated literals

correspond to predicates defined by facts in the knowledge base;
3. each layer P i, i > 1, contains only clauses whose negated literals are com-

pletely defined in lower level layers (i.e., layers P j with j < i).

Such a partition is called stratification, and P is called stratified.
A stratified program P with stratification P 1, . . . , Pn is evaluated by growing
layers, applying to each one CWA locally to the knowledge base made up by
the original knowledge base and by all literals obtained by the evaluation of the
previous layers.

There may be different stratifications for a given program, but all are equiv-
alent as regards the evaluation result. Moreover, not all programs are stratified.
The following notion allows to know if they are.

Definition 1 (Extended dependence graph) Let P be a Datalog¬ program.
The extended dependence graph of P , EDG(P ), is a directed graph whose nodes
represent predicates defined by rules in P , and there is an edge ⟨p, q⟩ if q occurs
in the body of a rule defining p.
An edge ⟨p, q⟩ is labeled with ¬ if there exists at least one rule having p as its
head and ¬q in its body.

A program P is stratified if EDG(P ) contains no cycles containing edges marked
with ¬. The evaluation of a stratified program produces a minimal Herbrand
model, called perfect model.

A specific kind of negation is expressed by the inequality built-in predicate
̸=. Using only this negation in Datalog yields an extension denoted by Datalog̸=.

2.1 Object Identity

We deal with Datalog under the Object identity (OI) assumption, defined as
follows:

Definition 2 (Object Identity)
Within a clause, terms denoted with different symbols must be distinct.



This notion is the basis for the definition of an equational theory for Datalog
clauses that adds one rewrite rule to the set of the axioms of Clark’s Equality
Theory (CET) [6]:

t ̸= s ∈ body(C) for each clause C in L and
for all pairs t, s of distinct terms that occur in C (OI)

where L denotes the language that consists of all the possible Datalog clauses
built from a finite number of predicates. The (OI) rewrite rule can be viewed as
an extension of both Reiter’s unique-names assumption [8] and axioms (7), (8)
and (9) of CET to the variables of the language.

DatalogOI is a sublanguage of Datalog̸= resulting from the application of OI
to Datalog. Under OI, any Datalog clause C generates a new Datalog ̸= clause
COI consisting of two components, called core and constraints:

– core(COI) = C and
– constraints(COI) = {t ̸= s | t, s ∈ terms(C) ∧ t, s distinct}

are the inequalities generated by the (OI) rewrite rule.

Formally, a DatalogOI program is made up of a set of Datalog̸= clauses of
the form

l0 : − l1, . . . , ln, c1, . . . , cm

where the li’s are as in Datalog, and the cj ’s are the inequalities generated by
the (OI) rule and n ≥ 0. Nevertheless, DatalogOI has the same expressive power
as Datalog, that is, for any Datalog program we can find a DatalogOI program
equivalent to it [11].

2.2 θOI-subsumption

Applying the OI assumption to the representation language causes the classical
ordering relations among clauses to be modified, thus yielding a new structure
of the corresponding search spaces for the refinement operators.

The ordering relation defined by the notion of θ-subsumption under OI upon
Datalog clauses [2, 10] is θOI -subsumption.

Definition 3 (θOI-subsumption ordering) Let C, D be Datalog clauses. D
θ-subsumes C under OI (D θOI -subsumes C), written C ≤OI D, iff ∃σ substi-
tution s.t. DOI .σ ⊆ COI . This means that D is more general than or equivalent
to C (in a theory revision setting, D is an upward refinement of C and C is a
downward refinement of D) under OI. C <OI D stands for C ≤OI D∧D ̸≤OI C.
C and D are equivalent under OI (C ∼OI D) when C ≤OI D and D ≤OI C.

A substitution, as usual, is a mapping from variables to terms [13]. Its domain
can be extended to terms: applying a substitution σ to a term t means that σ
is applied to all variables in t. In our case, applying a substitution to a constant
leaves it unchanged.

Like θ-subsumption, θOI -subsumption induces a quasi-ordering upon the
space of Datalog clauses, as stated by the following result.



Proposition 1 Let C, D, E be Datalog clauses. Then:

1. C ≤OI C (reflexivity)
2. C ≤OI D and D ≤OI E ⇒ C ≤OI E (transitivity)

Other interesting properties of θOI -subsumption are the following:

Proposition 2 Let C, D be Datalog clauses.

– C ≤OI D ⇒ C ≤θ D, where ≤θ denotes θ-subsumption
(i.e., θOI-subsumption is a weaker relation than θ-subsumption).

– C ≤OI D ⇒ |C| ≥ |D|.
– C ∼OI D iff C and D are renamings.

Non-injective substitutions would yield contradictions when applied to con-
straints (e.g., [x ̸= y].{x/a, y/a} = [a ̸= a]). So, under OI, substitutions are
required to be injective.

Requiring that terms are distinct ‘freezes’ the number of literals of the clause
(since they cannot unify among each other), hence θOI -subsumption maps each
literal of the subsuming clause onto a single, different literal in the subsumed
one. In particular, equivalent clauses under ≤OI must have the same number of
literals, hence the only way to have equivalence is through variable renaming.
Thus, a search space ordered by θOI -subsumption is made up of non-redundant
clauses, i.e. no subset of a clause can be equivalent to the clause itself under
OI. This yields smaller equivalence classes than those in a space ordered by
θ-subsumption.

Proposition 3 (Decidability of θOI-subsumption) Given two clauses C and
D, C ≤OI D is a decidable relationship.

In the worst case, i.e. when |D| ≤ |C|, all literals in D match with all literals
in |C|, and all such matchings are pairwise compatible, an upper bound to the

complexity of the θOI -subsumption test is
(|C|
|D|

)
.

3 Incremental Inductive Synthesis

ILP aims at learning logic programs from examples. In our setting, examples are
represented as clauses, whose body describes an observation, and whose head
specifies a relationship to be learned, referred to terms in the body. Negative
examples for a relationship have a negated head. A learned program is called a
theory, and is made up of hypotheses, i.e. sets of program clauses all defining the
same predicate. A hypothesis covers an example if the body of at least one of
its clauses is satisfied by the body of the example. The search space is the set of
all clauses that can be learned, ordered by a generalization relationship.

In ILP, a standard practice to restrict the search space is imposing biases
on it [7]. In the following, we are concerned with logic theories expressed as
hierarchical (i.e., non-recursive) programs, for which it is possible to find a level



mapping [6] s.t., in every program clause, the level of every predicate symbol
occurring in the body is less than the level of the predicate in the head. This has
strict connections with stratified programs, that are needed when the language
is extended to deal with negation. Another bias on the representation language
is that, whenever we write about clauses, we mean Datalog linked clauses. A
clause is linked if, for any term appearing in its body, it also appears in the head
or it is possible to find a chain of terms such that adjacent terms appear in the
same literal and at least a term in the chain appears in the head.

The canonical inductive paradigm requires the learned theory to be com-
plete and consistent. For hierarchical theories, the following definitions are given
(where E− and E+ are the sets of all the negative and positive examples, resp.):

Definition 4 (Inconsistency)

– A clause C is inconsistent wrt N ∈ E− iff ∃σ s.t.2 body(C).σ ⊆ body(N)∧
¬head(C).σ = head(N) ∧ constraints(COI).σ ⊆ constraints(NOI)

– A hypothesis H is inconsistent wrt N iff ∃C ∈ H: C is inconsistent wrt N .
– A theory T is inconsistent iff ∃H ⊆ T , ∃N ∈ E− : H is inconsistent wrt N .

Definition 5 (Incompleteness)

– A hypothesis H is incomplete wrt P iff ∀C ∈ H: not(P ≤OI C).
– A theory T is incomplete iff ∃H ⊆ T , ∃P ∈ E+: H is incomplete wrt P .

When the theory is to be learned incrementally, it becomes relevant to de-
fine operators that allow a stepwise (incremental) refinement of too weak or too
strong programs [5]. A refinement operator, applied to a clause, returns one of
its upward or downward refinements. Refinement operators are the means by
which wrong hypotheses in a logic theory are changed in order to account for
new examples with which they are incomplete or inconsistent. In the following,
we will assume that logic theories are made up of clauses that have only variables
as terms, built starting from observations described as conjunctions of ground
facts (i.e., variable-free atoms). This assumption causes no loss in expressive
power, since a reification process allows to express through predicates all the
information that may be carried out by constants. Put another way, we take to
the extreme the flattening procedure, considering even constants as 0-ary func-
tions that are replaced by 1-ary predicates having the same name and meaning.
This restriction simplifies the refinement operators for a space ordered by θOI -
subsumption defined in [2, 10], and the associated definitions and properties.

Definition 6 (Refinement operators under OI) Let C be a Datalog clause.

– D ∈ ρOI(C) (downward refinement operator) when
body(D) = body(C) ∪ {l}, where l is an atom s.t. l ̸∈ body(C).

– D ∈ δOI(C) (upward refinement operator) when
body(D) = body(C) \ {l}, where l is an atom s.t. l ∈ body(C).

2 ¬head(C).σ = head(N) because the relationship must be the same as for N .



Particularly important are locally finite, proper and complete (ideal) refine-
ment operators [10]. Such a kind of operators are not feasible when full Horn
clause logic is chosen as representation language and either θ-subsumption or im-
plication is adopted as generalization model, because of the existence of infinite
unbound strictly ascending/descending chains. On the contrary, in the space of
Datalog clauses ordered by θOI -subsumption such a kind of chains do not exist,
since equivalence among clauses coincides with alphabetic variance. This makes
possible the existence of ideal refinement operators under the ordering induced
by θOI -subsumption [2, 10].

By the definition of δOI , any possible generalization of a clause must have as
body a subset of its body, and hence there are 2|body(C)| such generalizations.

Proposition 4 [10] The refinement operators in Definition 6 are ideal for Dat-
alog clauses ordered by θOI-subsumption.

Inspired to a concept given by Shapiro [12], we have a measure for the complexity
of a clause:

Definition 7 (sizeOI) The size of a clause C under OI (sizeOI(C)) is the num-
ber of literals in the body of C:

sizeOI(C) =| body(C) |

Under θOI -subsumption it allows to predict the exact number of steps required
to perform a refinement, based only on the syntactic structure of the clauses
involved (that could be known or bounded a priori): given two clauses C and
D, if D <OI C, then C ∈ δkOI(D), D ∈ ρkOI(C), k = sizeOI(D)− sizeOI(C) =
|body(D)| − |body(C)|

4 Downward Refinement

When a negative example is covered, a specialization of the theory must be
performed. Starting from the current theory, the misclassified example and the
set of processed examples, the specialization algorithm outputs a revised theory.
In our framework, specializing means adding proper literals to a clause that is
inconsistent with respect to a negative example, in order to avoid its covering
that example. The possible options for choosing such a literal might be so large
that an exhaustive search is not feasible. Thus, we want the operator to focus the
search into the portion of the space of literals that contains the solution of the
diagnosed commission error, as a result of an analysis of its algebraic structure.

According to the theoretical operator in Definition 6, only positive literals
can be added. To this aim, we try to add to the clause one (or more) atom(s),
which characterize all the past positive examples and can discriminate them
from the current negative one. The search for such atoms is performed in the
space of positive literals, that contains information coming from the positive
examples used to learn the current theory, but not yet exploited by it. First
of all, the process of abstract diagnosis detects all the clauses that caused the
inconsistency. Let P = {P1, . . . , Pn} be the positive examples θOI -subsumed by



a clause C that is inconsistent wrt a negative example N . The set of all possible
most general downward refinements under OI of C against N is:

mgdrOI(C,N) = {M | M ≤OI C, M consistent wrt N, ∀D s.t. D ≤OI C,D
consistent wrt N : not(M <OI D)}

Among these, the search process aims at finding one that is compliant with
the previous positive examples in P, i.e. one of the most general downward
refinements under OI (mgdrOI) of C against N given P1, . . . , Pn:

mgdrOI(C,N | P1, . . . , Pn) = {M ∈ mgdrOI(C,N) | Pj ≤OI M, j = 1, . . . , n}

Since the downward refinements we are looking for must satisfy the property of
maximal generality, the operator tries to add as few atoms as possible. Thus, it
may happen that, even after some refinement steps, the added atoms are still
not sufficient to rule out the negative example, i.e. the specialization of C is still
overly general. This suggests to further exploit the positive examples in order
to specialize C. Specifically, if there exists a literal that, when added to the
body of C, is able to discriminate from the negative example N that caused
the inconsistency of C, then the downward refinement operator should be able
to find it. The resulting specialization should restore the consistency of C, by
refining it into a clause C ′ which still θOI -subsumes the positive examples Pi,
i = 1, 2, . . . , n.

The process of refining a clause by means of positive literals can be described
as follows. For each Pi, i = 1, 2, . . . , n, suppose that there exist ni distinct
substitutions s.t. C θOI -subsumes Pi, and consider all the possible n-tuples of
substitutions obtained by picking one of such substitutions for every positive
example. Each of these substitutions yields a distinct residual, consisting of all
the literals in the example that are not involved in the θOI -subsumption test,
after having properly turned their constants into variables. Formally:

Definition 8 (Residual) Let C be a clause, E an example, and σj a substitu-
tion s.t. body(C).σj ⊆ body(E) and constraints(COI).σj ⊆ constraints(EOI).
A residual of E wrt C under the mapping σj, denoted by ∆j(E,C), is:

∆j(E,C) = body(E).σ−1
j − body(C)

where σ−1
j is the extended antisubstitution of σj . An antisubstitution is a map-

ping from terms onto variables. When a clause C θOI -subsumes an example E
through a substitution σ, then it is possible to define a corresponding antisub-
stitution, σ−1, which is the inverse function of σ, mapping some constants in
E to variables in C. Since not all constants in E have a corresponding variable
according to σ−1, we introduce the extension of σ−1, denoted with σ−1, that is
defined on the whole set consts(E), and takes values in the set of the variables
of the language3:

σ−1(cn) =

{
σ−1(cn) if cn ∈ vars(C).σ

otherwise

3 Variables denoted by are new variables, managed as in Prolog.



The residuals obtained from the positive examples Pi, i = 1, . . . , n, can be ex-
ploited to build a space of complete positive downward refinements, denoted with
P, and formally defined as follows.

P =
∪ ∩

∆jk(Pk, C)

i=1,...,n k=1,...,n

ji=1,...,ni

where the symbol ∆jk(Pk, C) denotes one of the nk residuals of Pk wrt C, and
∩k=1,...,n∆jk(Pk, C), when jk ∈ {1, . . . , nk}, is the set of the literals common to
an n-tuple of residuals (one residual for each positive example Pk, k = 1, . . . , n).
Moreover, denoted with θj , j = 1, . . . ,m, all the substitutions which make C
inconsistent wrt N , let us define a new space:

S =
∪

j=1,...,m ∆j(N,C)

which includes all the literals that cannot be used for refining C, because they
would still be present in N .

Proposition 5 Given a clause C that θOI-subsumes the positive examples P1, . . . , Pn

and is inconsistent wrt the negative example N , then:
{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ P− S} ⊆
⊆ mgdrOI(C,N | P1, . . . , Pn)

Hence, every downward refinement built by adding a literal in P − S to the
inconsistent clause C restores the properties of consistency and completeness
of the original hypothesis. Moreover, it is one of the most general downward
refinements of C against N .

It may happen that no (set of) positive literal(s) is able to characterize the
past positive examples and discriminate the negative example that causes incon-
sistency. In such a case, the above version of the operator would fail. However,
we don’t want to give up yet, since the addition of a negative literal to the
clause body might restore consistency4. To take this opportunity, we extend the
search space to Datalog¬. These literals are interpreted according to the CWA.
Of course, suitable adaptations of the notions presented in Section 2 are used
to handle these literals5. So, in case of failure on the search for positive literals,
the algorithm autonomously performs a representation change, that allows it to
extend the search to the space of negative literals, built by taking into account
the negative example that caused the commission error. The new version of the
operator tries to add the negation of a literal, that is able to discriminate the
negative example from all the past positive ones. Revisions performed by this

4 Note that a negative literal in the body corresponds to a positive literal in the
clause. However, here we are expressing the fact that a condition must not hold in
an observation in order to infer the relationship in the head.

5 E.g., given two clauses under OI, C = C+ ∪ C− and D = D+ ∪D−, where C+ and
D+ include the positive literals and the OI-constraints, and C− and D− are sets of
negative literals, C ≤OI D iff ∃σ substitution s.t. D+.σ ⊆ C+ and ∀d ∈ D− : ̸ ∃c ∈
C− s.t. d.σ = c.



operator are always minimal [14], since all clauses in the theory contain only vari-
ables as arguments. Moreover, this operator is ideal in the space of constant-free
clauses. The definitions and results in the rest of this section are taken from [2].

When the space P − S does not contain any solution to the problem of
specializing an inconsistent clause, a change of representation must be performed
in order to search for literals in another space, corresponding to the quotient set
of the Datalog¬ linked clauses. In the following, a slightly different but equivalent
specification of the operator in this space will be provided with respect to [2].

First of all, we define the new target space, called the space of negative
downward refinements:

Sn = ¬S = ¬(∪j=1,...,m∆j(N,C))

where, given a set of literals φ = {l1, . . . , ln}, n ≥ 1: ¬φ = {¬l1, . . . ,¬ln}. Again,
we are interested in a specific subset of Sn, because of the properties satisfied
by its elements. Let us introduce the following notation:

S =
∩

j=1,...,m ∆j(N,C)

Note that S ⊆ S. Based on S, the space of consistent negative downward refine-
ments can be defined as:

Sc = ¬S = ¬(∩j=1,...,m∆j(N,C))

Indeed, Sc, compared to Sn, fulfills the following property:

Proposition 6 Given a clause C and an example N , then:
{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ Sc} ⊆ mgdrOI(C,N)

Overall, the search for a complete and consistent hypothesis can be viewed
as a two-stage process: the former stage searches into the space P−S, the latter
into Sc. It is now possible to formally define the downward refinement operator
ρconsOI on the space L of constant-free DatalogOI linked program clauses.

Definition 9 (ρconsOI ) ρconsOI : L → 2L∀C ∈ L : ρconsOI (C) =
{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ (P− S) ∪ Sc}

Proposition 7 The downward refinement operator ρconsOI is ideal.

The ideality of ρconsOI is owed to the peculiar structure of the search space
when ordered by the relation ≤OI .

5 Discussion and Extension of the Specialization
Operator

The existing definition of ρconsOI aims at identifying a set of literals each of which,
when added to a clause C, yields a new clause that is both consistent with the
given negative example and complete with respect to all the previous positive
examples. Now, this is true if the added literal belongs to the space of complete



positive downward refinements P−S. Conversely, the space of consistent negative
downward refinements does not ensure completeness wrt the previous positive
examples, since it is computed considering only all possible residuals of the
negative example. This can be easily shown in the following example6.

Example 1. Consider the following situation.
Two positive examples: P1 = h : −p, q, t, u. and P2 = h : −p, q, v.
produce as a least general generalization the clause C1 = h : −p, q.
Then, the negative example N1 = h : −p, q, t, u, v. arrives.
The residuals of P1 and P2 wrt C1 are {t, u} and {v}, respectively.
The residual of N1 is {t, u, v}. So, P − S = ({t, u} ∩ {v}) − {t, u, v} = ∅ −
{t, u, v} = ∅, hence no specialization by means of positive literals can be obtained
(as expected, since C was a least general generalization). Switching to the space
of negative literals, we have that Sc = ¬({t, u, v}) = {¬t,¬u,¬v}. However, none
of these literals generates a clause that is complete with all previous positive
examples:

C ′
2 = h : −p, q,¬t. where P1 ̸≤OI C ′

2

C ′′
2 = h : −p, q,¬u. where P1 ̸≤OI C ′′

2

C ′′′
2 = h : −p, q,¬v. where P2 ̸≤OI C ′′′

2

So, what we need to consider is not Sc. Intuitively, we want to select a literal
that is present in all residuals of the negative example and that is not present
in any residual of any positive example. Let us define:

P =
∪

∆ji(Pi, C)

i=1,...,n

ji=1,...,ni

Now, what we need to consider is S′
c = ¬(S−P).

Example 2. In the previous example, we would have S′
c = ({t, u, v})− ({t, u} ∪

{v}) = {t, u, v} − {t, u, v} = ∅ which shows, as expected, that no complete
refinement can be obtained for the given case.

Consider now another set of positive examples: P1 = h : −p, q, t, u., P2 = h :
−p, q, r. and P3 = h : −p, q, s, t.
whose least general generalization is, again, the clause C1 = h : −p, q.
Then, the negative example N1 = h : −p, q, t, u, v, w. arrives.
The residuals of the positive examples are: ∆(C1, P1) = {t, u}, ∆(C1, P2) = {r}
and ∆(C1, P3) = {s, t}.
The residual of N1 is {t, u, v, w} = S. So, P − S = ({t, u} ∩ {r} ∩ {s, t}) −
{t, u, v, w} = ∅ − {t, u, v, w} = ∅, hence again no specialization by means of
positive literals can be obtained. Switching to the space of negative literals, we
have that S′

c = ¬(S−P) = ¬({t, u, v, w}−({t, u}∪{r}∪{s, t})) = ¬({t, u, v, w}−

6 For the sake of readability, in the following we will often switch to a propositional
representation. This means that the residual is unique for each example, so the
subscript in ∆i(·, ·) is no more necessary.



{r, s, t, u}) = ¬({v, w}) = {¬v,¬w} and indeed, adding any of these literals to
C generates a clause that is complete with all previous positive examples:

C ′
2 = h : −p, q,¬v. where P1 ≤OI C ′

2, P2 ≤OI C ′
2 and P3 ≤OI C ′

2;
C ′′

2 = h : −p, q,¬w. where P1 ≤OI C ′′
2 , P2 ≤OI C ′′

2 , P3 ≤OI C ′′
2 .

This is captured by the following result:

Proposition 8 Given a clause C = h :– body(C) that θOI-subsumes the positive
examples P1, . . . , Pn and is inconsistent wrt the negative example N , then:
{C ′ | head(C ′) = head(C) ∧ body(C ′) = body(C) ∪ {l}, l ∈ S′

c} ⊆
⊆ mgdrOI(C,N | P1, . . . , Pn)

Now, an additional problem arises. Indeed, in some cases a single negative
literal is not enough to ensure that the correctness of the theory is restored. The
situation may be clarified by the following example.

Example 3. Consider again the situation described in Example 1.
While no single (positive or negative) literal can restore completeness and

consistency of the theory, either C ′
2 = h : −p, q,¬(t, v). or C ′′

2 = h : −p, q,¬(u, v).
would be correct refinements of C1 wrt {P1, P2, N1}. These solutions are not per-
mitted in the representation language, since only literals may appear in the body
of clauses. However, any of the two above clauses corresponds to the conjunction
of two clauses, e.g. C ′

2 is equivalent to {h : −p, q,¬t., h : −p, q,¬v.}. This solution
would introduce some redundancy in the theory, since the body of the original
clause C1 would appear in both specialized clauses. This might be undesirable,
in which case we may leverage Datalog implication and solve the problem by
inventing a new predicate s as follows: {h : −p, q,¬(s)., s : −t, v.}. The intuition
behind this choice is that the need to place together the literals in the negation
might be a hint of a more general relationship among them. This relationship
might be captured by a so far unknown concept, that is explicitly added. A
useful side effect of this setting is that when the same combination will occur
in future observations, it will be recognized and explicitly added by saturation,
this way obtaining higher level descriptions.

So, the extension comes into play when no single literal is sufficient to restore
correctness of the theory. Indeed, when a single literal is to be negated there is
no need for inventing any predicate. More formally, we are not looking anymore
for a single l ∈ S′

c to be added to C, but we need a S ⊆ S′
c s.t. ∀i : ∃l ∈ S

s.t. l ̸∈ Pi. In particular, we would like to find a minimal such set. Minimality
may be in terms of set inclusion or of number of elements: S = argminS(|S|).
To formally express our operator, let us define:

– ∀r ∈ ∆(N,C) :
• Pr = {Pi ∈ P|r ∈ ∆(Pi, C)}
• Pr = {Pi ∈ P|r ̸∈ ∆(Pi, C)}

– ∀S ⊆ ∆(N,C) :
• PS = ∩r∈SPr

• PS = ∪r∈SPr



Pr is the set of positive examples that are no more covered when adding ¬r to C;
Pr is the set of positive examples that are still covered when adding ¬r to C. PS

is the set of positive examples that are no more covered when adding neg(S) to
C; PS is the set of positive examples that are still covered when adding neg(S)
to C. This helps us to define what we are looking for. Specifically, we need a
S ⊆ ∆(N,C) s.t. PS = ∅ ∧ PS = P, as shown by the following example:

Example 4. Consider the set of positive examples P = {P1, P2, P3} where:
P1 = h : −p, q, s, t. P2 = h : −p, q, t, u. P3 = h : −p, q, u, r.
Given their least general generalization C = h : −p, q., the corresponding resid-
uals are:
∆(P1, C) = {s, t} ∆(P2, C) = {t, u} ∆(P3, C) = {u, r}
Now, given the negative example N = h : −p, q, s, t, u, r covered by C, with
residual ∆(N,C) = {s, t, u, r}, we have:
P{s,u} = Ps∩Pu = {P1}∩{P2, P3} = ∅; P{s,u} = Ps∩Pu = {P2, P3}∪{P1} = P:
SOLUTION!
P{t,r} = Pt∩Pr = {P1, P2}∩{P3} = ∅; P{t,r} = Pt∩Pr = {P3}∪{P1, P2} = P:
SOLUTION!
P{t,u} = Pt ∩ Pu = {P1, P2} ∩ {P2, P3} = {P2} ̸= ∅; P{t,u} = Pt ∩ Pu =
{P3} ∪ {P1} = {P3, P1} ≠ P: NOT A SOLUTION!
. . . and so on.

Of course, a trial-and-error approach would solve the problem, but there is an
exponential number of subsets to be tried. In order to devise a more efficient
algorithm, let us analyze the sets Pr, Pr, PS and PS to better understand them
and their behavior. First of all, the Px’s and Px’s are complementary:

Proposition 9 Given a clause C and a negative example N covered by C:

1. ∀r ∈ ∆(N,C) : {Pr,Pr} is a partition of P;
2. ∀S ⊆ ∆(N,C) : {PS ,PS} is a partition of P.

This ensures, in particular, that PS = ∅ ∧ PS = P ⇔ PS = ∅ ⇔ PS = P. We
also note that positive example (un-)coverage is monotonic:

Proposition 10 ∀S′ ⊂ S′′ ⊆ ∆(N,C) : PS′′ ⊆ PS′ ∧ PS′ ⊆ PS′′

Finally, let us note that any element of the residual of the negative example,
added to C, causes some positive example to become uncovered (which will be
used in the first iteration of our algorithm):

Proposition 11 If ρconsOI fails, then ∀r ∈ ∆(N,C) : Pr ̸= ∅.

We propose a sequential covering-like strategy to find such an S, according
to Algorithm 1. Note that, at the beginning of the algorithm, S = ∅ ⇒ PS =
∅ ⇒ |PS | = 0 and S = ∅ ⇒ PS = P ⇒ |PS | = n. However, as soon as
the loop is entered, the selection and addition of the first r makes P ̸= ∅ by
Proposition 11; so, the condition of the IF statement is true, hence S is updated
and a second round of the loop is guaranteed to take place. At each round, a new



Algorithm 1 Backtracking specialization strategy

S = ∅; R = ∆(N,C)
repeat

r ← select from R OR backtrack
R← R \ {r}; S ′ ← S ∪ {r}
if PS′ ̸= PS (⇔ PS′ ̸= PS) (⇔ PS′ ⊂ PS ⇔ PS′ ⊃ PS) then
S ← S ′

end if
until PS = ∅ (⇔ PS = P) OR no more backtracking available
if PS = ∅ (⇔ PS = P) then

return S
else

return failure
end if

r is removed from R and added to S only if the coverage improves, otherwise it
is discarded. If the last r does not satisfy the loop condition, the overall solution
is not complete and backtracking is applied. Note that, in the worst case, adding
the whole residual to C would be a solution, which ensures termination of the
algorithm (unless there is a positive example that includes the whole residual,
which can be checked before starting the algorithm). If different solutions are
requested, backtracking can be applied to non-discarded items.

6 Conclusions and Future Work

Incremental supervised Machine Learning approaches using First-Order Logic
representations are mandatory when tackling complex real-world tasks, in which
relationships among objects play a fundamental role. A noteworthy framework
for these approaches is based on the space of Datalog Horn clauses under the Ob-
ject Identity assumption, which ensures the existence of (upward and downward)
refinement operators fulfilling desirable requirements. The refinement operators
for this framework proposed in the current literature have some limitations that
this paper aims at overcoming. So, after recalling the most important elements of
the framework and of the current operators, this paper points out these deficien-
cies and proposes solutions that result in improved operators. Specifically, the
downward refinement operator is considered. A preliminary prototype of the op-
erator has been implemented, and is currently being integrated in the InTheLEx
learning system.

Future work includes a study of the possible connections of the extended
operator with related fields of the logic-based learning, such as deduction, ab-
straction and predicate invention. Experiments aimed at assessing the efficiency
and effectiveness of the operator in real-world domains are also planned.
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